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The Pauli Principle and the Restricted Primitive
Model
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The restricted primitive model is an electrically neutral, classical model consist-
ing of hard spheres charged either +q or &q. We show that, by appropriately
selecting the diameter of the hard spheres, the pressure when q=0 can be made
equal to that for a fluid of Maxwell�Boltzmann point ions and an ideal Fermi
gas of electrons. We compare the series expansion of these classical and quan-
tum systems and find that, except for intermediate de Broglie density and
moderate to strong electrical interaction strength, the restricted primitive model
gives a reasonable representation of the pressure of the corresponding quantum
system. Much of the current interest, however, has been focused on the above,
excepted region.

KEY WORDS: Equations of state; primitive model; quantum perturbation
theory; classical perturbation theory; hydrogen.

In the theory of ionic solutions, (1) the restricted primitive model seemed a
reasonable way to approximate the true many-body quantum problem.(2)

In its original form, we have a classical, hard-sphere gas. One half of the
spheres are charge +q and the other half are charged &q. Stell and
Lebowitz(3) derived an expansion in powers of the charge about the hard-
sphere gas limit. This expansion was further studied by Stell and Wu.(4) It
has also been simulated by Monte Carlo methods.(5) It is our view that,
over an appropriate range of conditions, the hard sphere is a means of
simulating classically the repulsion of the Pauli principle of quantum
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mechanics. A further word should be said about the interaction between
the positively and negatively charged particles. After all, there is clearly no
Pauli exclusion between them. Never-the-less, we know that in the quan-
tum mechanical treatment that the eigenspectrum is lower semi-bounded.
In turn, there is a lower bound on the average separation (depending on
the pressure, for example) between these two types of particles. Thus the
restricted primitive model is not wholely unsatisfactory to model the inter-
action in the oppositely charged case. In this case, the words Pauli principle
in the title are a compact metaphor for the effective quantum repulsion.

Just because a model might be thought to be primitive or crude does
not mean it is uninteresting. Consider, as an example, the Ising model. It
is certainly primitive and crude, but its study through the years has been
very illuminating. The restricted primitive model has, in recent years, been
the subject of considerable study(6) with regard to consideration of the
nature of the critical point in various ionic fluids amongst other aspects.

As far as we have been able to tell, not much study has been given to
the question of the appropriate choice of the diameter of the hard sphere.(6)

In this study, we will consider the restricted primitive model with ions of
charge +e and electrons of charge &e. All of these particles will be
represented by hard spheres of the same diameter c. The more realistic
problem of the charged hard-sphere�point-ion mixture(7) could be studied
by the same methods we employ here, but we will not do so. The Stell and
Lebowitz(3) expansion results include the restricted primitive model where
�& z l

& \&=0 for all odd l.
It is well known that a system of hard spheres can not be compressed

beyond a certain density. On the other hand a system of point ions and
point electrons can be compressed to an arbitrarily high density. (We are
not however thinking of compressions so high as to force protons and elec-
trons to combine into neutrons.) The criterion that we will use to select the
diameter of the hard spheres is to make the pressure of the reference
system, i.e., the uncharged, hard-sphere system, equal to the actual pressure
of the uncharged quantum system.

Baker et al.(8) have reviewed the classical hard sphere fluid. They use
the virial expansion,

P0
2NkT

=3(x)=1+2.961921959x+5.483113556x2+7.456350520x3

+8.485568085x4+8.868x5+9.250x6+ } } } (1)

as computed by Kratky.(9) Here 0 is the volume, k is Boltzmann's constant,
T is the absolute temperature, N is the number of ions, and also the number
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of electrons. We use x as the density divided by the density of close packing.
That is,

0�x#\�\0�1, \0#- 2�c3, (2)

where c is the diameter of the hard spheres. This series is rigorously known
to converge for |x| less than or about equal to 0.026.(10) One would expect
that a fluid phase would exist for x�x0 , where x0 is the density of random
close packing. Scott and Kilgour(11) have found the empirical value
x0=0.8597. (See also, Visscher and Bolsterli.(12)) Baker et al.(8) have found
that the [2�4] and the [3�3] Pade� approximants(13) reproduce this empirical
value to two digit accuracy. We find it convenient to use the [3�3] which
diverges at x=0.8622. It is,

3(x)r
1+0.61965799x+0.62970656x2&0.040053014x3

1&2.3422639x+2.0841961x2&0.82673025x3 . (3)

This result gives us a very convenient analytic representation for the
pressure of the hard-sphere-gas, reference system.

The corresponding quantum system is hydrogen, which for our case is
an ideal Fermi gas of electrons plus a Maxwell�Boltzmann gas of ions. The
results for the ideal Fermi gas are well known(14) to be,

P0
NkT

=
f5�2(z)
f3�2(z)

=g(`), (4)

where ` is the de Broglie density

`=
N

20 \ h2

2?mkT +
3�2

= f3�2(z) (5)

and

fn(z)=
1

1 (n) |
�

0

zyn&1e&y dy
1+ze&y = :

�

l=1

(&1) l+1 zl

l n . (6)

The function g(`) is obtained by solving Eq. (5) for z(`) and then substituting
in Eq. (4). Baker and Johnson(15) give the handy representation

g(`)r_1+0.62094880`+0.12660436`2+0.0091177644`3

1+0.080618739` &
1�3

, (7)
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which is accurate to within 0.10. Thus the total pressure for the corre-
sponding quantum system is,

p=
NkT

0
[1+g(`)]. (8)

We may now select the appropriate diameter by equating the pressures
found in Eqs. (1) and (8). Therefore,

23(x(`))=1+g(`). (9)

By use of the representation Eq. (3), Eq. (9) becomes a cubic equation in
x, which we may solve by means of Cardan's method.(16) The coefficients
are such that there is just one real root. It is positive and lies between 0 and
0.8622. For `=0 we find x=0, and as ` � � we have x � 0.8622. From
x(`) we may deduce that

c=_ x(`)

- 2\ &
1�3

=- ? _x(`)
` &

1�3

\ �2

mkT +
1�2

, (10)

where the last factor is *, the ``thermal length.'' When this choice of c is
made, we are guaranteed that the pressure of the reference system is equal
(within our errors as noted above) to that for the corresponding quantum
system. In Fig. 1 we plot x(`) for hydrogen. In Fig. 2 we plot the value of
the diameter c of the hard spheres over the thermal length * again for
hydrogen.

Fig. 1. The density ratio x as a function of the deBroglie density `.
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Fig. 2. The ratio of the hard-sphere diameter c to the thermal length * as a function of the
deBroglie density `.

Stell and Wu(4) give the excess free energy for the restricted primitive
model as an expansion in powers of the electron charge e. If the Helmholtz
free energy A is related to S by A= &kT0S, and S0 is the result for the
reference system, then they give,

(S&S0) c3=
(}c)3

12?
[A+B}c+C(}c)2+D(}c)3+ } } } , (11)

where

A=1, B= 3
4J2, C=& 3

2 J1,... (12)

and

}2=
4?e2

kT
:
&

Z 2
& \&=

8?e2

kT
\ (13)

for our case. } is the reciprocal Debye length and & is the species index. As
we will be comparing this result with the corresponding quantum case, we
will only carry the computations through order }4 as that is as far as those
computations go.(17) In order to compare with the quantum case we use the
same expansion parameter as is used in the paper of Baker and Johnson.(17)

It is

y2=
e2

rbkT
with rb=_ 30

4?N&
1�3

, (14)
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where rb is the Wigner-Seitz, cellular-model radius. The quantity J2 is
given by Stell and Wu(4) as

J2=
1
c |

�

0
h0

12 dr with h0
12=&1+g0

12 , (15)

where g0
12 is the radial distribution function for the reference system. They

use the approximation formulated, and privately communicated to them,
by Rasaiah which is

J2RI
r &\1+0.1156871\c3+0.005611\2c6

1+0.573836\c3 + . (16)

By Eq. (2) \c3=x(`)�- 2, which is a function of ` only. Putting these
results together we get

&kT0(S&S0)=&2 �2
3

NkTy3 _1+- 6 \3 - ?
4 +

2�3

\x(`)

- 2 +
1�3

_J2 \x(`)

- 2 + y+ } } } & . (17)

By use of the thermodynamic identity p0=&0�A��0 |T we obtain the
pressure from Eq. (17) as,

p0
NkT

=1+g(`)&�2
3

y3 {1+- 6 \4?
3 +

1�3

\x(`)

- 2 +
1�3

J2 \x(`)

- 2 +
_\1+

d log x(`)
d log ` _1

2
+

3
2

J2$
J2 \

x(`)

- 2 +&+ y+ } } } = . (18)

Note is to be taken that Eq. (18) gives an expansion on the right-hand side
in powers of y whose coefficients are functions of ` alone.

The results for the pressure for the corresponding quantum system
have been given by Baker and Johnson.(17) Their results are,

p0
NkT

=1+g(`)+G2(`) y2+G3(`) y3+G4(`) y4+ } } } . (19)

The Gi (`) are defined by the small y behavior for general ` by Eq. (19)
and the expressions for the Gi are given in full in ref. 17 as well as handy
numerical representations. G0(`)#1+g(`). We will not give these formulae
here as they are rather lengthy to set out, but will confine ourselves to
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Fig. 3. [1+g(`)]�2 for hydrogen.

numerical examples. The behavior of the zeroth order term is illustrated in
Fig. 3 for hydrogen.

One obvious difference between the classical and the quantum cases is
the fact that the classical case (at least for hydrogen) has no y2 term and
the quantum case does. In Fig. 4 we plot the ratio G2 �G0 , again for
hydrogen. This contribution is a purely quantum one and is the exchange
correction. We see that it is relatively small.

Fig. 4. G2�G0 for hydrogen.
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Fig. 5. G3 �G0 for hydrogen in the classical and the quantum cases.

We next turn to the consideration of the y3 term. It is called the
Debye�Hu� ckel term,(18) after their discovery of it in the theory of ionic
solutions. We show it in Fig. 5 for hydrogen. For hydrogen, the shapes of
the classical and the quantum curves are very similar, but they are offset
in ` by about one order of magnitude.

For the fourth coefficient, we notice a marked difference between the
quantum results and the classical case. These results are illustrated in Fig. 6
for hydrogen. Most obviously, these curves are of different signs for the
classical and the quantum cases! The magnitude of the classical coefficient

Fig. 6. G4 �G0 for hydrogen in the classical and the quantum cases.

240 Baker and Johnson



is larger than that of the quantum coefficient. This term in the quantum
case involves the ``second exchange correction'' and the next term in the
expansion of the Debye�Hu� ckel term. In both the classical case and the
quantum case, four-particle correlations are involved.

From these comparisons, at least in the area of plasma physics, we can
conclude that both for low deBroglie density (classical limit) and for high
deBroglie density (degenerate quantum gas limit) that the restricted
primitive model does reasonably well in representing the pressure. For
intermediate deBroglie densities and weak coupling, that is smallish y, it
will also do reasonably well. However for moderate to strong coupling and
intermediate deBroglie density, the discrepancies in the third and fourth
coefficients indicate that the detail behavior in this region will vary between
the two models. This is not too surprising when one remembers that con-
densation into atoms, and atoms into molecules(19) occurs here, and that
the effects of quantum mechanics are very considerable.

It is, of course, not surprising that when the interaction is weak
( y<<1) that the kinetic energy dominates and so both the quantum and
the classical systems reduce to the ideal gas. Likewise, at very high
deBroglie densities, `>>1, the electron pressure due to the Pauli exclusion
principle becomes dominant and again the quantum system and our
modified, restricted, primitive model tend to the same values. It might have
been the case that a miracle occurred and the modified, restricted, primitive
model was also accurate in the intermediate regions, but such is not the
case. We provide quantitative results to enable one to put limits on the
region where a given accuracy can be expected for the modified, restricted,
primitive model.
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